$$k=- 2 f^{(0)} \omega_{0}\\b=A_{1} \left(f^{(0)}\right)^{2}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=0$$
$f_0=- \frac{2 A_{1} a \overline{a}}{\omega_{0}^{2}}$
$f_{2}=\frac{A_{1} a^{2}}{3 \omega_{0}^{2}},\qquad f_{-2}=\frac{A_{1} \overline{a}^{2}}{3 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(1)} + A_{2} \left(f^{(0)}\right)^{3}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=- \frac{10 A_{1}^{2} a^{2} \overline{a}}{3 \omega_{0}^{2}} + 3 A_{2} a^{2} \overline{a}$$
$\omega_2=\frac{a \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{6 \omega_{0}^{3}}$¶
$f_{3}=\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}},\qquad f_{-3}=\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(2)} + A_{1} \left(f^{(1)}\right)^{2} + 3 A_{2} \left(f^{(0)}\right)^{2} f^{(1)} + A_{3} \left(f^{(0)}\right)^{4} - \frac{a f^{(1)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{3 \omega_{0}^{2}}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=0$$
$f_0=- \frac{38 A_{1}^{3} a^{2} \overline{a}^{2}}{9 \omega_{0}^{6}} + \frac{10 A_{1} A_{2} a^{2} \overline{a}^{2}}{\omega_{0}^{4}} - \frac{6 A_{3} a^{2} \overline{a}^{2}}{\omega_{0}^{2}}$
$f_{2}=\frac{59 A_{1}^{3} a^{3} \overline{a}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a^{3} \overline{a}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a^{3} \overline{a}}{3 \omega_{0}^{2}},\qquad f_{-2}=\frac{59 A_{1}^{3} a \overline{a}^{3}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a \overline{a}^{3}}{3 \omega_{0}^{2}}$
$f_{4}=\frac{A_{1}^{3} a^{4}}{54 \omega_{0}^{6}} + \frac{A_{1} A_{2} a^{4}}{12 \omega_{0}^{4}} + \frac{A_{3} a^{4}}{15 \omega_{0}^{2}},\qquad f_{-4}=\frac{A_{1}^{3} \overline{a}^{4}}{54 \omega_{0}^{6}} + \frac{A_{1} A_{2} \overline{a}^{4}}{12 \omega_{0}^{4}} + \frac{A_{3} \overline{a}^{4}}{15 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(3)} + 2 A_{1} f^{(1)} f^{(2)} + 3 A_{2} \left(f^{(0)}\right)^{2} f^{(2)} + 3 A_{2} f^{(0)} \left(f^{(1)}\right)^{2} + 4 A_{3} \left(f^{(0)}\right)^{3} f^{(1)} + A_{4} \left(f^{(0)}\right)^{5} - \frac{a^{2} f^{(0)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right)^{2} \overline{a}^{2}}{36 \omega_{0}^{6}} - \frac{a f^{(2)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{3 \omega_{0}^{2}}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=\frac{26 A_{1}^{2} A_{2} a^{3} \overline{a}^{2}}{3 \omega_{0}^{4}} + \frac{2 A_{1}^{2} \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \overline{a}^{2}}{3 \omega_{0}^{2}} - \frac{56 A_{1} A_{3} a^{3} \overline{a}^{2}}{3 \omega_{0}^{2}} + 2 A_{1} \left(a \left(- \frac{38 A_{1}^{3} a^{2} \overline{a}^{2}}{9 \omega_{0}^{6}} + \frac{10 A_{1} A_{2} a^{2} \overline{a}^{2}}{\omega_{0}^{4}} - \frac{6 A_{3} a^{2} \overline{a}^{2}}{\omega_{0}^{2}}\right) + \left(\frac{59 A_{1}^{3} a^{3} \overline{a}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a^{3} \overline{a}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a^{3} \overline{a}}{3 \omega_{0}^{2}}\right) \overline{a}\right) + 3 A_{2} \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \overline{a}^{2} + 10 A_{4} a^{3} \overline{a}^{2} - \frac{a^{3} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right)^{2} \overline{a}^{2}}{36 \omega_{0}^{6}}$$
$\omega_4=\frac{a^{2} \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{2}}{432 \omega_{0}^{7}}$¶
$f_{3}=\frac{79 A_{1}^{4} a^{4} \overline{a}}{144 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{2} a^{4} \overline{a}}{48 \omega_{0}^{6}} - \frac{3 A_{1} A_{3} a^{4} \overline{a}}{20 \omega_{0}^{4}} - \frac{21 A_{2}^{2} a^{4} \overline{a}}{64 \omega_{0}^{4}} + \frac{5 A_{4} a^{4} \overline{a}}{8 \omega_{0}^{2}},\qquad f_{-3}=\frac{79 A_{1}^{4} a \overline{a}^{4}}{144 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{2} a \overline{a}^{4}}{48 \omega_{0}^{6}} - \frac{3 A_{1} A_{3} a \overline{a}^{4}}{20 \omega_{0}^{4}} - \frac{21 A_{2}^{2} a \overline{a}^{4}}{64 \omega_{0}^{4}} + \frac{5 A_{4} a \overline{a}^{4}}{8 \omega_{0}^{2}}$
$f_{5}=\frac{5 A_{1}^{4} a^{5}}{1296 \omega_{0}^{8}} + \frac{5 A_{1}^{2} A_{2} a^{5}}{144 \omega_{0}^{6}} + \frac{11 A_{1} A_{3} a^{5}}{180 \omega_{0}^{4}} + \frac{A_{2}^{2} a^{5}}{64 \omega_{0}^{4}} + \frac{A_{4} a^{5}}{24 \omega_{0}^{2}},\qquad f_{-5}=\frac{5 A_{1}^{4} \overline{a}^{5}}{1296 \omega_{0}^{8}} + \frac{5 A_{1}^{2} A_{2} \overline{a}^{5}}{144 \omega_{0}^{6}} + \frac{11 A_{1} A_{3} \overline{a}^{5}}{180 \omega_{0}^{4}} + \frac{A_{2}^{2} \overline{a}^{5}}{64 \omega_{0}^{4}} + \frac{A_{4} \overline{a}^{5}}{24 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(4)} + 2 A_{1} f^{(1)} f^{(3)} + A_{1} \left(f^{(2)}\right)^{2} + 3 A_{2} \left(f^{(0)}\right)^{2} f^{(3)} + 6 A_{2} f^{(0)} f^{(1)} f^{(2)} + A_{2} \left(f^{(1)}\right)^{3} + 4 A_{3} \left(f^{(0)}\right)^{3} f^{(2)} + 6 A_{3} \left(f^{(0)}\right)^{2} \left(f^{(1)}\right)^{2} + 5 A_{4} \left(f^{(0)}\right)^{4} f^{(1)} + A_{5} \left(f^{(0)}\right)^{6} - \frac{a^{2} f^{(1)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right)^{2} \overline{a}^{2}}{36 \omega_{0}^{6}} - \frac{a^{2} f^{(1)} \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{2}}{216 \omega_{0}^{6}} - \frac{a f^{(3)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{3 \omega_{0}^{2}}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=0$$
$f_0=- \frac{11897 A_{1}^{5} a^{3} \overline{a}^{3}}{648 \omega_{0}^{10}} + \frac{5125 A_{1}^{3} A_{2} a^{3} \overline{a}^{3}}{72 \omega_{0}^{8}} - \frac{550 A_{1}^{2} A_{3} a^{3} \overline{a}^{3}}{9 \omega_{0}^{6}} - \frac{1441 A_{1} A_{2}^{2} a^{3} \overline{a}^{3}}{32 \omega_{0}^{6}} + \frac{140 A_{1} A_{4} a^{3} \overline{a}^{3}}{3 \omega_{0}^{4}} + \frac{27 A_{2} A_{3} a^{3} \overline{a}^{3}}{\omega_{0}^{4}} - \frac{20 A_{5} a^{3} \overline{a}^{3}}{\omega_{0}^{2}}$
$f_{2}=\frac{1207 A_{1}^{5} a^{4} \overline{a}^{2}}{216 \omega_{0}^{10}} - \frac{4813 A_{1}^{3} A_{2} a^{4} \overline{a}^{2}}{216 \omega_{0}^{8}} + \frac{5087 A_{1}^{2} A_{3} a^{4} \overline{a}^{2}}{270 \omega_{0}^{6}} + \frac{1387 A_{1} A_{2}^{2} a^{4} \overline{a}^{2}}{96 \omega_{0}^{6}} - \frac{485 A_{1} A_{4} a^{4} \overline{a}^{2}}{36 \omega_{0}^{4}} - \frac{81 A_{2} A_{3} a^{4} \overline{a}^{2}}{10 \omega_{0}^{4}} + \frac{5 A_{5} a^{4} \overline{a}^{2}}{\omega_{0}^{2}},\qquad f_{-2}=\frac{1207 A_{1}^{5} a^{2} \overline{a}^{4}}{216 \omega_{0}^{10}} - \frac{4813 A_{1}^{3} A_{2} a^{2} \overline{a}^{4}}{216 \omega_{0}^{8}} + \frac{5087 A_{1}^{2} A_{3} a^{2} \overline{a}^{4}}{270 \omega_{0}^{6}} + \frac{1387 A_{1} A_{2}^{2} a^{2} \overline{a}^{4}}{96 \omega_{0}^{6}} - \frac{485 A_{1} A_{4} a^{2} \overline{a}^{4}}{36 \omega_{0}^{4}} - \frac{81 A_{2} A_{3} a^{2} \overline{a}^{4}}{10 \omega_{0}^{4}} + \frac{5 A_{5} a^{2} \overline{a}^{4}}{\omega_{0}^{2}}$
$f_{4}=\frac{89 A_{1}^{5} a^{5} \overline{a}}{486 \omega_{0}^{10}} + \frac{A_{1}^{3} A_{2} a^{5} \overline{a}}{9 \omega_{0}^{8}} - \frac{A_{1}^{2} A_{3} a^{5} \overline{a}}{9 \omega_{0}^{6}} - \frac{7 A_{1} A_{2}^{2} a^{5} \overline{a}}{8 \omega_{0}^{6}} - \frac{2 A_{1} A_{4} a^{5} \overline{a}}{15 \omega_{0}^{4}} + \frac{9 A_{2} A_{3} a^{5} \overline{a}}{50 \omega_{0}^{4}} + \frac{2 A_{5} a^{5} \overline{a}}{5 \omega_{0}^{2}},\qquad f_{-4}=\frac{89 A_{1}^{5} a \overline{a}^{5}}{486 \omega_{0}^{10}} + \frac{A_{1}^{3} A_{2} a \overline{a}^{5}}{9 \omega_{0}^{8}} - \frac{A_{1}^{2} A_{3} a \overline{a}^{5}}{9 \omega_{0}^{6}} - \frac{7 A_{1} A_{2}^{2} a \overline{a}^{5}}{8 \omega_{0}^{6}} - \frac{2 A_{1} A_{4} a \overline{a}^{5}}{15 \omega_{0}^{4}} + \frac{9 A_{2} A_{3} a \overline{a}^{5}}{50 \omega_{0}^{4}} + \frac{2 A_{5} a \overline{a}^{5}}{5 \omega_{0}^{2}}$
$f_{6}=\frac{A_{1}^{5} a^{6}}{1296 \omega_{0}^{10}} + \frac{5 A_{1}^{3} A_{2} a^{6}}{432 \omega_{0}^{8}} + \frac{A_{1}^{2} A_{3} a^{6}}{30 \omega_{0}^{6}} + \frac{A_{1} A_{2}^{2} a^{6}}{64 \omega_{0}^{6}} + \frac{A_{1} A_{4} a^{6}}{20 \omega_{0}^{4}} + \frac{A_{2} A_{3} a^{6}}{50 \omega_{0}^{4}} + \frac{A_{5} a^{6}}{35 \omega_{0}^{2}},\qquad f_{-6}=\frac{A_{1}^{5} \overline{a}^{6}}{1296 \omega_{0}^{10}} + \frac{5 A_{1}^{3} A_{2} \overline{a}^{6}}{432 \omega_{0}^{8}} + \frac{A_{1}^{2} A_{3} \overline{a}^{6}}{30 \omega_{0}^{6}} + \frac{A_{1} A_{2}^{2} \overline{a}^{6}}{64 \omega_{0}^{6}} + \frac{A_{1} A_{4} \overline{a}^{6}}{20 \omega_{0}^{4}} + \frac{A_{2} A_{3} \overline{a}^{6}}{50 \omega_{0}^{4}} + \frac{A_{5} \overline{a}^{6}}{35 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(5)} + 2 A_{1} f^{(1)} f^{(4)} + 2 A_{1} f^{(2)} f^{(3)} + 3 A_{2} \left(f^{(0)}\right)^{2} f^{(4)} + 6 A_{2} f^{(0)} f^{(1)} f^{(3)} + 3 A_{2} f^{(0)} \left(f^{(2)}\right)^{2} + 3 A_{2} \left(f^{(1)}\right)^{2} f^{(2)} + 4 A_{3} \left(f^{(0)}\right)^{3} f^{(3)} + 12 A_{3} \left(f^{(0)}\right)^{2} f^{(1)} f^{(2)} + 4 A_{3} f^{(0)} \left(f^{(1)}\right)^{3} + 5 A_{4} \left(f^{(0)}\right)^{4} f^{(2)} + 10 A_{4} \left(f^{(0)}\right)^{3} \left(f^{(1)}\right)^{2} + 6 A_{5} \left(f^{(0)}\right)^{5} f^{(1)} + A_{6} \left(f^{(0)}\right)^{7} - \frac{a^{3} f^{(0)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{3}}{1296 \omega_{0}^{10}} - \frac{a^{2} f^{(2)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right)^{2} \overline{a}^{2}}{36 \omega_{0}^{6}} - \frac{a^{2} f^{(2)} \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{2}}{216 \omega_{0}^{6}} - \frac{a f^{(4)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{3 \omega_{0}^{2}}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=- \frac{188 A_{1}^{3} A_{3} a^{4} \overline{a}^{3}}{9 \omega_{0}^{6}} + \frac{670 A_{1}^{2} A_{4} a^{4} \overline{a}^{3}}{9 \omega_{0}^{4}} + \frac{2 A_{1}^{2} \left(\frac{79 A_{1}^{4} a^{4} \overline{a}}{144 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{2} a^{4} \overline{a}}{48 \omega_{0}^{6}} - \frac{3 A_{1} A_{3} a^{4} \overline{a}}{20 \omega_{0}^{4}} - \frac{21 A_{2}^{2} a^{4} \overline{a}}{64 \omega_{0}^{4}} + \frac{5 A_{4} a^{4} \overline{a}}{8 \omega_{0}^{2}}\right) \overline{a}^{2}}{3 \omega_{0}^{2}} - \frac{90 A_{1} A_{5} a^{4} \overline{a}^{3}}{\omega_{0}^{2}} + 2 A_{1} \left(a \left(- \frac{11897 A_{1}^{5} a^{3} \overline{a}^{3}}{648 \omega_{0}^{10}} + \frac{5125 A_{1}^{3} A_{2} a^{3} \overline{a}^{3}}{72 \omega_{0}^{8}} - \frac{550 A_{1}^{2} A_{3} a^{3} \overline{a}^{3}}{9 \omega_{0}^{6}} - \frac{1441 A_{1} A_{2}^{2} a^{3} \overline{a}^{3}}{32 \omega_{0}^{6}} + \frac{140 A_{1} A_{4} a^{3} \overline{a}^{3}}{3 \omega_{0}^{4}} + \frac{27 A_{2} A_{3} a^{3} \overline{a}^{3}}{\omega_{0}^{4}} - \frac{20 A_{5} a^{3} \overline{a}^{3}}{\omega_{0}^{2}}\right) + \left(\frac{1207 A_{1}^{5} a^{4} \overline{a}^{2}}{216 \omega_{0}^{10}} - \frac{4813 A_{1}^{3} A_{2} a^{4} \overline{a}^{2}}{216 \omega_{0}^{8}} + \frac{5087 A_{1}^{2} A_{3} a^{4} \overline{a}^{2}}{270 \omega_{0}^{6}} + \frac{1387 A_{1} A_{2}^{2} a^{4} \overline{a}^{2}}{96 \omega_{0}^{6}} - \frac{485 A_{1} A_{4} a^{4} \overline{a}^{2}}{36 \omega_{0}^{4}} - \frac{81 A_{2} A_{3} a^{4} \overline{a}^{2}}{10 \omega_{0}^{4}} + \frac{5 A_{5} a^{4} \overline{a}^{2}}{\omega_{0}^{2}}\right) \overline{a}\right) + 2 A_{1} \left(\left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \left(\frac{59 A_{1}^{3} a \overline{a}^{3}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a \overline{a}^{3}}{3 \omega_{0}^{2}}\right) + \left(\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}\right) \left(\frac{A_{1}^{3} a^{4}}{54 \omega_{0}^{6}} + \frac{A_{1} A_{2} a^{4}}{12 \omega_{0}^{4}} + \frac{A_{3} a^{4}}{15 \omega_{0}^{2}}\right)\right) + 6 A_{2} a \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \left(\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}\right) + 3 A_{2} \left(\frac{A_{1}^{2} a^{4} \left(\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}\right)}{9 \omega_{0}^{4}} - \frac{4 A_{1}^{2} a \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \overline{a}^{3}}{3 \omega_{0}^{4}}\right) + 6 A_{2} \left(\frac{A_{1} a^{3} \left(\frac{59 A_{1}^{3} a \overline{a}^{3}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a \overline{a}^{3}}{3 \omega_{0}^{2}}\right)}{3 \omega_{0}^{2}} - \frac{5 A_{1} a^{2} \left(- \frac{38 A_{1}^{3} a^{2} \overline{a}^{2}}{9 \omega_{0}^{6}} + \frac{10 A_{1} A_{2} a^{2} \overline{a}^{2}}{\omega_{0}^{4}} - \frac{6 A_{3} a^{2} \overline{a}^{2}}{\omega_{0}^{2}}\right) \overline{a}}{3 \omega_{0}^{2}} - \frac{5 A_{1} a \left(\frac{59 A_{1}^{3} a^{3} \overline{a}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a^{3} \overline{a}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a^{3} \overline{a}}{3 \omega_{0}^{2}}\right) \overline{a}^{2}}{3 \omega_{0}^{2}} + \frac{A_{1} \left(\frac{A_{1}^{3} a^{4}}{54 \omega_{0}^{6}} + \frac{A_{1} A_{2} a^{4}}{12 \omega_{0}^{4}} + \frac{A_{3} a^{4}}{15 \omega_{0}^{2}}\right) \overline{a}^{3}}{3 \omega_{0}^{2}}\right) + 3 A_{2} \left(\frac{79 A_{1}^{4} a^{4} \overline{a}}{144 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{2} a^{4} \overline{a}}{48 \omega_{0}^{6}} - \frac{3 A_{1} A_{3} a^{4} \overline{a}}{20 \omega_{0}^{4}} - \frac{21 A_{2}^{2} a^{4} \overline{a}}{64 \omega_{0}^{4}} + \frac{5 A_{4} a^{4} \overline{a}}{8 \omega_{0}^{2}}\right) \overline{a}^{2} + 12 A_{3} \left(\frac{A_{1} a^{4} \left(\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}\right)}{3 \omega_{0}^{2}} - \frac{4 A_{1} a \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \overline{a}^{3}}{3 \omega_{0}^{2}}\right) + 4 A_{3} \left(a^{3} \left(\frac{59 A_{1}^{3} a \overline{a}^{3}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a \overline{a}^{3}}{3 \omega_{0}^{2}}\right) + 3 a^{2} \left(- \frac{38 A_{1}^{3} a^{2} \overline{a}^{2}}{9 \omega_{0}^{6}} + \frac{10 A_{1} A_{2} a^{2} \overline{a}^{2}}{\omega_{0}^{4}} - \frac{6 A_{3} a^{2} \overline{a}^{2}}{\omega_{0}^{2}}\right) \overline{a} + 3 a \left(\frac{59 A_{1}^{3} a^{3} \overline{a}}{54 \omega_{0}^{6}} - \frac{31 A_{1} A_{2} a^{3} \overline{a}}{12 \omega_{0}^{4}} + \frac{4 A_{3} a^{3} \overline{a}}{3 \omega_{0}^{2}}\right) \overline{a}^{2} + \left(\frac{A_{1}^{3} a^{4}}{54 \omega_{0}^{6}} + \frac{A_{1} A_{2} a^{4}}{12 \omega_{0}^{4}} + \frac{A_{3} a^{4}}{15 \omega_{0}^{2}}\right) \overline{a}^{3}\right) + 5 A_{4} \left(a^{4} \left(\frac{A_{1}^{2} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} \overline{a}^{3}}{8 \omega_{0}^{2}}\right) + 4 a \left(\frac{A_{1}^{2} a^{3}}{12 \omega_{0}^{4}} + \frac{A_{2} a^{3}}{8 \omega_{0}^{2}}\right) \overline{a}^{3}\right) + 35 A_{6} a^{4} \overline{a}^{3} - \frac{a^{4} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{3}}{1296 \omega_{0}^{10}}$$
$\omega_6=\frac{a^{3} \left(- 1035800 A_{1}^{6} + 5015220 A_{1}^{4} A_{2} \omega_{0}^{2} - 4823040 A_{1}^{3} A_{3} \omega_{0}^{4} - 4939650 A_{1}^{2} A_{2}^{2} \omega_{0}^{4} + 4147200 A_{1}^{2} A_{4} \omega_{0}^{6} + 5356800 A_{1} A_{2} A_{3} \omega_{0}^{6} - 3110400 A_{1} A_{5} \omega_{0}^{8} + 49815 A_{2}^{3} \omega_{0}^{6} - 259200 A_{2} A_{4} \omega_{0}^{8} - 1306368 A_{3}^{2} \omega_{0}^{8} + 907200 A_{6} \omega_{0}^{10}\right) \overline{a}^{3}}{51840 \omega_{0}^{11}}$¶
$f_{3}=\frac{19283 A_{1}^{6} a^{5} \overline{a}^{2}}{5184 \omega_{0}^{12}} - \frac{46615 A_{1}^{4} A_{2} a^{5} \overline{a}^{2}}{3456 \omega_{0}^{10}} + \frac{1361 A_{1}^{3} A_{3} a^{5} \overline{a}^{2}}{180 \omega_{0}^{8}} + \frac{1905 A_{1}^{2} A_{2}^{2} a^{5} \overline{a}^{2}}{256 \omega_{0}^{8}} - \frac{467 A_{1}^{2} A_{4} a^{5} \overline{a}^{2}}{360 \omega_{0}^{6}} - \frac{263 A_{1} A_{2} A_{3} a^{5} \overline{a}^{2}}{600 \omega_{0}^{6}} - \frac{17 A_{1} A_{5} a^{5} \overline{a}^{2}}{5 \omega_{0}^{4}} + \frac{417 A_{2}^{3} a^{5} \overline{a}^{2}}{512 \omega_{0}^{6}} - \frac{41 A_{2} A_{4} a^{5} \overline{a}^{2}}{16 \omega_{0}^{4}} - \frac{9 A_{3}^{2} a^{5} \overline{a}^{2}}{10 \omega_{0}^{4}} + \frac{21 A_{6} a^{5} \overline{a}^{2}}{8 \omega_{0}^{2}},\qquad f_{-3}=\frac{19283 A_{1}^{6} a^{2} \overline{a}^{5}}{5184 \omega_{0}^{12}} - \frac{46615 A_{1}^{4} A_{2} a^{2} \overline{a}^{5}}{3456 \omega_{0}^{10}} + \frac{1361 A_{1}^{3} A_{3} a^{2} \overline{a}^{5}}{180 \omega_{0}^{8}} + \frac{1905 A_{1}^{2} A_{2}^{2} a^{2} \overline{a}^{5}}{256 \omega_{0}^{8}} - \frac{467 A_{1}^{2} A_{4} a^{2} \overline{a}^{5}}{360 \omega_{0}^{6}} - \frac{263 A_{1} A_{2} A_{3} a^{2} \overline{a}^{5}}{600 \omega_{0}^{6}} - \frac{17 A_{1} A_{5} a^{2} \overline{a}^{5}}{5 \omega_{0}^{4}} + \frac{417 A_{2}^{3} a^{2} \overline{a}^{5}}{512 \omega_{0}^{6}} - \frac{41 A_{2} A_{4} a^{2} \overline{a}^{5}}{16 \omega_{0}^{4}} - \frac{9 A_{3}^{2} a^{2} \overline{a}^{5}}{10 \omega_{0}^{4}} + \frac{21 A_{6} a^{2} \overline{a}^{5}}{8 \omega_{0}^{2}}$
$f_{5}=\frac{2375 A_{1}^{6} a^{6} \overline{a}}{46656 \omega_{0}^{12}} + \frac{85 A_{1}^{4} A_{2} a^{6} \overline{a}}{384 \omega_{0}^{10}} + \frac{25 A_{1}^{3} A_{3} a^{6} \overline{a}}{108 \omega_{0}^{8}} - \frac{1235 A_{1}^{2} A_{2}^{2} a^{6} \overline{a}}{2304 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{4} a^{6} \overline{a}}{216 \omega_{0}^{6}} - \frac{199 A_{1} A_{2} A_{3} a^{6} \overline{a}}{360 \omega_{0}^{6}} - \frac{A_{1} A_{5} a^{6} \overline{a}}{21 \omega_{0}^{4}} - \frac{43 A_{2}^{3} a^{6} \overline{a}}{512 \omega_{0}^{6}} + \frac{A_{2} A_{4} a^{6} \overline{a}}{16 \omega_{0}^{4}} + \frac{23 A_{3}^{2} a^{6} \overline{a}}{90 \omega_{0}^{4}} + \frac{7 A_{6} a^{6} \overline{a}}{24 \omega_{0}^{2}},\qquad f_{-5}=\frac{2375 A_{1}^{6} a \overline{a}^{6}}{46656 \omega_{0}^{12}} + \frac{85 A_{1}^{4} A_{2} a \overline{a}^{6}}{384 \omega_{0}^{10}} + \frac{25 A_{1}^{3} A_{3} a \overline{a}^{6}}{108 \omega_{0}^{8}} - \frac{1235 A_{1}^{2} A_{2}^{2} a \overline{a}^{6}}{2304 \omega_{0}^{8}} - \frac{43 A_{1}^{2} A_{4} a \overline{a}^{6}}{216 \omega_{0}^{6}} - \frac{199 A_{1} A_{2} A_{3} a \overline{a}^{6}}{360 \omega_{0}^{6}} - \frac{A_{1} A_{5} a \overline{a}^{6}}{21 \omega_{0}^{4}} - \frac{43 A_{2}^{3} a \overline{a}^{6}}{512 \omega_{0}^{6}} + \frac{A_{2} A_{4} a \overline{a}^{6}}{16 \omega_{0}^{4}} + \frac{23 A_{3}^{2} a \overline{a}^{6}}{90 \omega_{0}^{4}} + \frac{7 A_{6} a \overline{a}^{6}}{24 \omega_{0}^{2}}$
$f_{7}=\frac{7 A_{1}^{6} a^{7}}{46656 \omega_{0}^{12}} + \frac{35 A_{1}^{4} A_{2} a^{7}}{10368 \omega_{0}^{10}} + \frac{91 A_{1}^{3} A_{3} a^{7}}{6480 \omega_{0}^{8}} + \frac{7 A_{1}^{2} A_{2}^{2} a^{7}}{768 \omega_{0}^{8}} + \frac{149 A_{1}^{2} A_{4} a^{7}}{4320 \omega_{0}^{6}} + \frac{181 A_{1} A_{2} A_{3} a^{7}}{7200 \omega_{0}^{6}} + \frac{3 A_{1} A_{5} a^{7}}{70 \omega_{0}^{4}} + \frac{A_{2}^{3} a^{7}}{512 \omega_{0}^{6}} + \frac{A_{2} A_{4} a^{7}}{64 \omega_{0}^{4}} + \frac{A_{3}^{2} a^{7}}{180 \omega_{0}^{4}} + \frac{A_{6} a^{7}}{48 \omega_{0}^{2}},\qquad f_{-7}=\frac{7 A_{1}^{6} \overline{a}^{7}}{46656 \omega_{0}^{12}} + \frac{35 A_{1}^{4} A_{2} \overline{a}^{7}}{10368 \omega_{0}^{10}} + \frac{91 A_{1}^{3} A_{3} \overline{a}^{7}}{6480 \omega_{0}^{8}} + \frac{7 A_{1}^{2} A_{2}^{2} \overline{a}^{7}}{768 \omega_{0}^{8}} + \frac{149 A_{1}^{2} A_{4} \overline{a}^{7}}{4320 \omega_{0}^{6}} + \frac{181 A_{1} A_{2} A_{3} \overline{a}^{7}}{7200 \omega_{0}^{6}} + \frac{3 A_{1} A_{5} \overline{a}^{7}}{70 \omega_{0}^{4}} + \frac{A_{2}^{3} \overline{a}^{7}}{512 \omega_{0}^{6}} + \frac{A_{2} A_{4} \overline{a}^{7}}{64 \omega_{0}^{4}} + \frac{A_{3}^{2} \overline{a}^{7}}{180 \omega_{0}^{4}} + \frac{A_{6} \overline{a}^{7}}{48 \omega_{0}^{2}}$
$$k=- 2 f^{(0)} \omega_{0}\\b=2 A_{1} f^{(0)} f^{(6)} + 2 A_{1} f^{(1)} f^{(5)} + 2 A_{1} f^{(2)} f^{(4)} + A_{1} \left(f^{(3)}\right)^{2} + 3 A_{2} \left(f^{(0)}\right)^{2} f^{(5)} + 6 A_{2} f^{(0)} f^{(1)} f^{(4)} + 6 A_{2} f^{(0)} f^{(2)} f^{(3)} + 3 A_{2} \left(f^{(1)}\right)^{2} f^{(3)} + 3 A_{2} f^{(1)} \left(f^{(2)}\right)^{2} + 4 A_{3} \left(f^{(0)}\right)^{3} f^{(4)} + 12 A_{3} \left(f^{(0)}\right)^{2} f^{(1)} f^{(3)} + 6 A_{3} \left(f^{(0)}\right)^{2} \left(f^{(2)}\right)^{2} + 12 A_{3} f^{(0)} \left(f^{(1)}\right)^{2} f^{(2)} + A_{3} \left(f^{(1)}\right)^{4} + 5 A_{4} \left(f^{(0)}\right)^{4} f^{(3)} + 20 A_{4} \left(f^{(0)}\right)^{3} f^{(1)} f^{(2)} + 10 A_{4} \left(f^{(0)}\right)^{2} \left(f^{(1)}\right)^{3} + 6 A_{5} \left(f^{(0)}\right)^{5} f^{(2)} + 15 A_{5} \left(f^{(0)}\right)^{4} \left(f^{(1)}\right)^{2} + 7 A_{6} \left(f^{(0)}\right)^{6} f^{(1)} + A_{7} \left(f^{(0)}\right)^{8} - \frac{a^{3} f^{(1)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{3}}{1296 \omega_{0}^{10}} - \frac{a^{3} f^{(1)} \left(- 1035800 A_{1}^{6} + 5015220 A_{1}^{4} A_{2} \omega_{0}^{2} - 4823040 A_{1}^{3} A_{3} \omega_{0}^{4} - 4939650 A_{1}^{2} A_{2}^{2} \omega_{0}^{4} + 4147200 A_{1}^{2} A_{4} \omega_{0}^{6} + 5356800 A_{1} A_{2} A_{3} \omega_{0}^{6} - 3110400 A_{1} A_{5} \omega_{0}^{8} + 49815 A_{2}^{3} \omega_{0}^{6} - 259200 A_{2} A_{4} \omega_{0}^{8} - 1306368 A_{3}^{2} \omega_{0}^{8} + 907200 A_{6} \omega_{0}^{10}\right) \overline{a}^{3}}{25920 \omega_{0}^{10}} - \frac{a^{2} f^{(3)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right)^{2} \overline{a}^{2}}{36 \omega_{0}^{6}} - \frac{a^{2} f^{(3)} \left(- 1940 A_{1}^{4} + 6228 A_{1}^{2} A_{2} \omega_{0}^{2} - 6048 A_{1} A_{3} \omega_{0}^{4} - 405 A_{2}^{2} \omega_{0}^{4} + 2160 A_{4} \omega_{0}^{6}\right) \overline{a}^{2}}{216 \omega_{0}^{6}} - \frac{a f^{(5)} \left(- 10 A_{1}^{2} + 9 A_{2} \omega_{0}^{2}\right) \overline{a}}{3 \omega_{0}^{2}}$$
after evaluation:$$k=- 2 a \omega_{0}\\b=0$$
$f_0=- \frac{1181413 A_{1}^{7} a^{4} \overline{a}^{4}}{11664 \omega_{0}^{14}} + \frac{52397 A_{1}^{5} A_{2} a^{4} \overline{a}^{4}}{96 \omega_{0}^{12}} - \frac{783443 A_{1}^{4} A_{3} a^{4} \overline{a}^{4}}{1620 \omega_{0}^{10}} - \frac{431023 A_{1}^{3} A_{2}^{2} a^{4} \overline{a}^{4}}{576 \omega_{0}^{10}} + \frac{85315 A_{1}^{3} A_{4} a^{4} \overline{a}^{4}}{216 \omega_{0}^{8}} + \frac{36763 A_{1}^{2} A_{2} A_{3} a^{4} \overline{a}^{4}}{40 \omega_{0}^{8}} - \frac{315 A_{1}^{2} A_{5} a^{4} \overline{a}^{4}}{\omega_{0}^{6}} + \frac{24181 A_{1} A_{2}^{3} a^{4} \overline{a}^{4}}{128 \omega_{0}^{8}} - \frac{18935 A_{1} A_{2} A_{4} a^{4} \overline{a}^{4}}{48 \omega_{0}^{6}} - \frac{53152 A_{1} A_{3}^{2} a^{4} \overline{a}^{4}}{225 \omega_{0}^{6}} + \frac{210 A_{1} A_{6} a^{4} \overline{a}^{4}}{\omega_{0}^{4}} - \frac{453 A_{2}^{2} A_{3} a^{4} \overline{a}^{4}}{4 \omega_{0}^{6}} + \frac{165 A_{2} A_{5} a^{4} \overline{a}^{4}}{2 \omega_{0}^{4}} + \frac{121 A_{3} A_{4} a^{4} \overline{a}^{4}}{\omega_{0}^{4}} - \frac{70 A_{7} a^{4} \overline{a}^{4}}{\omega_{0}^{2}}$
$f_{2}=\frac{1151545 A_{1}^{7} a^{5} \overline{a}^{3}}{34992 \omega_{0}^{14}} - \frac{476867 A_{1}^{5} A_{2} a^{5} \overline{a}^{3}}{2592 \omega_{0}^{12}} + \frac{3947 A_{1}^{4} A_{3} a^{5} \overline{a}^{3}}{24 \omega_{0}^{10}} + \frac{453935 A_{1}^{3} A_{2}^{2} a^{5} \overline{a}^{3}}{1728 \omega_{0}^{10}} - \frac{96709 A_{1}^{3} A_{4} a^{5} \overline{a}^{3}}{720 \omega_{0}^{8}} - \frac{3482329 A_{1}^{2} A_{2} A_{3} a^{5} \overline{a}^{3}}{10800 \omega_{0}^{8}} + \frac{1041 A_{1}^{2} A_{5} a^{5} \overline{a}^{3}}{10 \omega_{0}^{6}} - \frac{26719 A_{1} A_{2}^{3} a^{5} \overline{a}^{3}}{384 \omega_{0}^{8}} + \frac{194993 A_{1} A_{2} A_{4} a^{5} \overline{a}^{3}}{1440 \omega_{0}^{6}} + \frac{10993 A_{1} A_{3}^{2} a^{5} \overline{a}^{3}}{135 \omega_{0}^{6}} - \frac{763 A_{1} A_{6} a^{5} \overline{a}^{3}}{12 \omega_{0}^{4}} + \frac{48401 A_{2}^{2} A_{3} a^{5} \overline{a}^{3}}{1200 \omega_{0}^{6}} - \frac{537 A_{2} A_{5} a^{5} \overline{a}^{3}}{20 \omega_{0}^{4}} - \frac{353 A_{3} A_{4} a^{5} \overline{a}^{3}}{9 \omega_{0}^{4}} + \frac{56 A_{7} a^{5} \overline{a}^{3}}{3 \omega_{0}^{2}},\qquad f_{-2}=\frac{1151545 A_{1}^{7} a^{3} \overline{a}^{5}}{34992 \omega_{0}^{14}} - \frac{476867 A_{1}^{5} A_{2} a^{3} \overline{a}^{5}}{2592 \omega_{0}^{12}} + \frac{3947 A_{1}^{4} A_{3} a^{3} \overline{a}^{5}}{24 \omega_{0}^{10}} + \frac{453935 A_{1}^{3} A_{2}^{2} a^{3} \overline{a}^{5}}{1728 \omega_{0}^{10}} - \frac{96709 A_{1}^{3} A_{4} a^{3} \overline{a}^{5}}{720 \omega_{0}^{8}} - \frac{3482329 A_{1}^{2} A_{2} A_{3} a^{3} \overline{a}^{5}}{10800 \omega_{0}^{8}} + \frac{1041 A_{1}^{2} A_{5} a^{3} \overline{a}^{5}}{10 \omega_{0}^{6}} - \frac{26719 A_{1} A_{2}^{3} a^{3} \overline{a}^{5}}{384 \omega_{0}^{8}} + \frac{194993 A_{1} A_{2} A_{4} a^{3} \overline{a}^{5}}{1440 \omega_{0}^{6}} + \frac{10993 A_{1} A_{3}^{2} a^{3} \overline{a}^{5}}{135 \omega_{0}^{6}} - \frac{763 A_{1} A_{6} a^{3} \overline{a}^{5}}{12 \omega_{0}^{4}} + \frac{48401 A_{2}^{2} A_{3} a^{3} \overline{a}^{5}}{1200 \omega_{0}^{6}} - \frac{537 A_{2} A_{5} a^{3} \overline{a}^{5}}{20 \omega_{0}^{4}} - \frac{353 A_{3} A_{4} a^{3} \overline{a}^{5}}{9 \omega_{0}^{4}} + \frac{56 A_{7} a^{3} \overline{a}^{5}}{3 \omega_{0}^{2}}$
$f_{4}=\frac{54067 A_{1}^{7} a^{6} \overline{a}^{2}}{34992 \omega_{0}^{14}} - \frac{283 A_{1}^{5} A_{2} a^{6} \overline{a}^{2}}{96 \omega_{0}^{12}} + \frac{3649 A_{1}^{4} A_{3} a^{6} \overline{a}^{2}}{3240 \omega_{0}^{10}} - \frac{3457 A_{1}^{3} A_{2}^{2} a^{6} \overline{a}^{2}}{576 \omega_{0}^{10}} + \frac{A_{1}^{3} A_{4} a^{6} \overline{a}^{2}}{81 \omega_{0}^{8}} + \frac{9529 A_{1}^{2} A_{2} A_{3} a^{6} \overline{a}^{2}}{1080 \omega_{0}^{8}} + \frac{61 A_{1}^{2} A_{5} a^{6} \overline{a}^{2}}{63 \omega_{0}^{6}} + \frac{2299 A_{1} A_{2}^{3} a^{6} \overline{a}^{2}}{384 \omega_{0}^{8}} - \frac{47 A_{1} A_{2} A_{4} a^{6} \overline{a}^{2}}{10 \omega_{0}^{6}} - \frac{878 A_{1} A_{3}^{2} a^{6} \overline{a}^{2}}{675 \omega_{0}^{6}} - \frac{49 A_{1} A_{6} a^{6} \overline{a}^{2}}{18 \omega_{0}^{4}} - \frac{2099 A_{2}^{2} A_{3} a^{6} \overline{a}^{2}}{800 \omega_{0}^{6}} + \frac{27 A_{2} A_{5} a^{6} \overline{a}^{2}}{70 \omega_{0}^{4}} - \frac{4 A_{3} A_{4} a^{6} \overline{a}^{2}}{15 \omega_{0}^{4}} + \frac{28 A_{7} a^{6} \overline{a}^{2}}{15 \omega_{0}^{2}},\qquad f_{-4}=\frac{54067 A_{1}^{7} a^{2} \overline{a}^{6}}{34992 \omega_{0}^{14}} - \frac{283 A_{1}^{5} A_{2} a^{2} \overline{a}^{6}}{96 \omega_{0}^{12}} + \frac{3649 A_{1}^{4} A_{3} a^{2} \overline{a}^{6}}{3240 \omega_{0}^{10}} - \frac{3457 A_{1}^{3} A_{2}^{2} a^{2} \overline{a}^{6}}{576 \omega_{0}^{10}} + \frac{A_{1}^{3} A_{4} a^{2} \overline{a}^{6}}{81 \omega_{0}^{8}} + \frac{9529 A_{1}^{2} A_{2} A_{3} a^{2} \overline{a}^{6}}{1080 \omega_{0}^{8}} + \frac{61 A_{1}^{2} A_{5} a^{2} \overline{a}^{6}}{63 \omega_{0}^{6}} + \frac{2299 A_{1} A_{2}^{3} a^{2} \overline{a}^{6}}{384 \omega_{0}^{8}} - \frac{47 A_{1} A_{2} A_{4} a^{2} \overline{a}^{6}}{10 \omega_{0}^{6}} - \frac{878 A_{1} A_{3}^{2} a^{2} \overline{a}^{6}}{675 \omega_{0}^{6}} - \frac{49 A_{1} A_{6} a^{2} \overline{a}^{6}}{18 \omega_{0}^{4}} - \frac{2099 A_{2}^{2} A_{3} a^{2} \overline{a}^{6}}{800 \omega_{0}^{6}} + \frac{27 A_{2} A_{5} a^{2} \overline{a}^{6}}{70 \omega_{0}^{4}} - \frac{4 A_{3} A_{4} a^{2} \overline{a}^{6}}{15 \omega_{0}^{4}} + \frac{28 A_{7} a^{2} \overline{a}^{6}}{15 \omega_{0}^{2}}$
$f_{6}=\frac{11 A_{1}^{7} a^{7} \overline{a}}{864 \omega_{0}^{14}} + \frac{211 A_{1}^{5} A_{2} a^{7} \overline{a}}{1728 \omega_{0}^{12}} + \frac{4 A_{1}^{4} A_{3} a^{7} \overline{a}}{15 \omega_{0}^{10}} - \frac{173 A_{1}^{3} A_{2}^{2} a^{7} \overline{a}}{1152 \omega_{0}^{10}} + \frac{23 A_{1}^{3} A_{4} a^{7} \overline{a}}{216 \omega_{0}^{8}} - \frac{13 A_{1}^{2} A_{2} A_{3} a^{7} \overline{a}}{24 \omega_{0}^{8}} - \frac{61 A_{1}^{2} A_{5} a^{7} \overline{a}}{294 \omega_{0}^{6}} - \frac{53 A_{1} A_{2}^{3} a^{7} \overline{a}}{256 \omega_{0}^{8}} - \frac{869 A_{1} A_{2} A_{4} a^{7} \overline{a}}{1680 \omega_{0}^{6}} + \frac{51 A_{1} A_{3}^{2} a^{7} \overline{a}}{350 \omega_{0}^{6}} + \frac{A_{1} A_{6} a^{7} \overline{a}}{56 \omega_{0}^{4}} - \frac{111 A_{2}^{2} A_{3} a^{7} \overline{a}}{2800 \omega_{0}^{6}} + \frac{57 A_{2} A_{5} a^{7} \overline{a}}{980 \omega_{0}^{4}} + \frac{11 A_{3} A_{4} a^{7} \overline{a}}{35 \omega_{0}^{4}} + \frac{8 A_{7} a^{7} \overline{a}}{35 \omega_{0}^{2}},\qquad f_{-6}=\frac{11 A_{1}^{7} a \overline{a}^{7}}{864 \omega_{0}^{14}} + \frac{211 A_{1}^{5} A_{2} a \overline{a}^{7}}{1728 \omega_{0}^{12}} + \frac{4 A_{1}^{4} A_{3} a \overline{a}^{7}}{15 \omega_{0}^{10}} - \frac{173 A_{1}^{3} A_{2}^{2} a \overline{a}^{7}}{1152 \omega_{0}^{10}} + \frac{23 A_{1}^{3} A_{4} a \overline{a}^{7}}{216 \omega_{0}^{8}} - \frac{13 A_{1}^{2} A_{2} A_{3} a \overline{a}^{7}}{24 \omega_{0}^{8}} - \frac{61 A_{1}^{2} A_{5} a \overline{a}^{7}}{294 \omega_{0}^{6}} - \frac{53 A_{1} A_{2}^{3} a \overline{a}^{7}}{256 \omega_{0}^{8}} - \frac{869 A_{1} A_{2} A_{4} a \overline{a}^{7}}{1680 \omega_{0}^{6}} + \frac{51 A_{1} A_{3}^{2} a \overline{a}^{7}}{350 \omega_{0}^{6}} + \frac{A_{1} A_{6} a \overline{a}^{7}}{56 \omega_{0}^{4}} - \frac{111 A_{2}^{2} A_{3} a \overline{a}^{7}}{2800 \omega_{0}^{6}} + \frac{57 A_{2} A_{5} a \overline{a}^{7}}{980 \omega_{0}^{4}} + \frac{11 A_{3} A_{4} a \overline{a}^{7}}{35 \omega_{0}^{4}} + \frac{8 A_{7} a \overline{a}^{7}}{35 \omega_{0}^{2}}$
$f_{8}=\frac{A_{1}^{7} a^{8}}{34992 \omega_{0}^{14}} + \frac{7 A_{1}^{5} A_{2} a^{8}}{7776 \omega_{0}^{12}} + \frac{49 A_{1}^{4} A_{3} a^{8}}{9720 \omega_{0}^{10}} + \frac{7 A_{1}^{3} A_{2}^{2} a^{8}}{1728 \omega_{0}^{10}} + \frac{29 A_{1}^{3} A_{4} a^{8}}{1620 \omega_{0}^{8}} + \frac{97 A_{1}^{2} A_{2} A_{3} a^{8}}{5400 \omega_{0}^{8}} + \frac{53 A_{1}^{2} A_{5} a^{8}}{1470 \omega_{0}^{6}} + \frac{A_{1} A_{2}^{3} a^{8}}{384 \omega_{0}^{8}} + \frac{61 A_{1} A_{2} A_{4} a^{8}}{2520 \omega_{0}^{6}} + \frac{79 A_{1} A_{3}^{2} a^{8}}{9450 \omega_{0}^{6}} + \frac{19 A_{1} A_{6} a^{8}}{504 \omega_{0}^{4}} + \frac{71 A_{2}^{2} A_{3} a^{8}}{16800 \omega_{0}^{6}} + \frac{13 A_{2} A_{5} a^{8}}{980 \omega_{0}^{4}} + \frac{A_{3} A_{4} a^{8}}{126 \omega_{0}^{4}} + \frac{A_{7} a^{8}}{63 \omega_{0}^{2}},\qquad f_{-8}=\frac{A_{1}^{7} \overline{a}^{8}}{34992 \omega_{0}^{14}} + \frac{7 A_{1}^{5} A_{2} \overline{a}^{8}}{7776 \omega_{0}^{12}} + \frac{49 A_{1}^{4} A_{3} \overline{a}^{8}}{9720 \omega_{0}^{10}} + \frac{7 A_{1}^{3} A_{2}^{2} \overline{a}^{8}}{1728 \omega_{0}^{10}} + \frac{29 A_{1}^{3} A_{4} \overline{a}^{8}}{1620 \omega_{0}^{8}} + \frac{97 A_{1}^{2} A_{2} A_{3} \overline{a}^{8}}{5400 \omega_{0}^{8}} + \frac{53 A_{1}^{2} A_{5} \overline{a}^{8}}{1470 \omega_{0}^{6}} + \frac{A_{1} A_{2}^{3} \overline{a}^{8}}{384 \omega_{0}^{8}} + \frac{61 A_{1} A_{2} A_{4} \overline{a}^{8}}{2520 \omega_{0}^{6}} + \frac{79 A_{1} A_{3}^{2} \overline{a}^{8}}{9450 \omega_{0}^{6}} + \frac{19 A_{1} A_{6} \overline{a}^{8}}{504 \omega_{0}^{4}} + \frac{71 A_{2}^{2} A_{3} \overline{a}^{8}}{16800 \omega_{0}^{6}} + \frac{13 A_{2} A_{5} \overline{a}^{8}}{980 \omega_{0}^{4}} + \frac{A_{3} A_{4} \overline{a}^{8}}{126 \omega_{0}^{4}} + \frac{A_{7} \overline{a}^{8}}{63 \omega_{0}^{2}}$